

UiO **Department of Chemistry** University of Oslo

Tailoring the properties of BGLC double perovskites

Einar Vøllestad, R. Strandbakke and T. Norby University of Oslo, Department of Chemistry

Primary problems

- ► How can we understand the influence of A-site substitution of $Ba_{1-x}La_{0,2+x}Gd_{0,8}Co_2O_{6-\delta}$?
- Can we derive a general defect chemical model which describes all experimental data?

Double perovskites identified as promising candidate materials as PCEC electrodes

- $BaGd_{0.8}La_{0.2}Co_2O_{6-\delta}$ (BGLC):
- Lowest reported ASR for PCECs
- 0.04 Ωcm² at 700°C

R. Strandbakke et al., Solid State Ionics (2015)
 J. Dailly et al., Electrochimica Acta (2010)
 Y. Lin et al., Journal of Power Sources (2008)
 H. Ding, X. Xue, Int. Journal of Hydrogen Energy (2010)

Double perovskites identified as promising candidate materials as PCEC electrodes

- $BaGd_{0.8}La_{0.2}Co_2O_{6-\delta}$ (BGLC):
 - Lowest reported ASR for PCECs
- 0.04 Ωcm² at 700°C

- Proton incorporation suggested to facilitate fast electrode kinetics
- Decomposition of BGLC observed in steam pressures over 0.5 atm

Investigation of various compositions in terms of stability, electrochemical activity and defect chemistry

R. Strandbakke et al., Solid State Ionics (2015)

UiO **Department of Chemistry** University of Oslo

Tailoring the composition towards higher stability in high steam pressures

 $Ba_{1-x}La_{x}Gd_{0.8}La_{0.2}Co_{2}O_{6-\delta}$, x = 0-0.5

- Nomenclature:
 - $\blacktriangleright Ba_{0.7}Gd_{0.8}La_{0.5}Co_2O_{6-\delta} \text{ abbreviated as }BGLC785$
- Commercial production by Marion Technologies using combustion synthesis
 - Single phase powders displaying double perovskite structure obtained for all compositions

Characterization

- Structural analysis by XRD high temperature and synchrotron
- Electrochemical characterization for both electrocatalytic activity and bulk electrical conductivity
- Thermogravimetry for non-stoichiometry data and defect model fitting

Structural characterization

UiO : Department of Chemistry University of Oslo

BGLC1082 (x = 0)

UiO: Department of Chemistry University of Oslo

BGLC884 (x = 0.2)

UiO : Department of Chemistry University of Oslo

BGLC785 (x = 0.3)

UiO **Department of Chemistry** University of Oslo

Electrochemical characterization

UiO : Department of Chemistry University of Oslo

All BGLC compositions show high electrochemical activity, but no clear trend is evident

University of Oslo

All BGLC compositions show high electrochemical activity, but no clear trend is evident

Large oxygen non-stoichiometry in all compositions

Simple defect chemistry cannot account for the experimental data

UiO **Department of Chemistry** University of Oslo Developing a new defect chemical model from the basis of a fully oxidized double perovskite

Ref. state: BaLnCo₂O₆

Developing a new defect chemical model from the basis of a fully oxidized double perovskite

University of Oslo

Developing a new defect chemical model from the basis of a fully oxidized double perovskite

Governing Equations for $Ba_{1-x}Gd_{0.8}La_{0.2+x}Co_2O_{6-\delta}$

Equilibrium reactions

$$\frac{\text{Reduction reaction:}}{K_{red} = \frac{\left[v_{03}^{\bullet\bullet}\right] \left[\text{Co}_{Co}^{3/2'}\right]^2}{\left[0_{03}^{x}\right] \left[\text{Co}_{Co}^{1/2'}\right]^2} p_{0_2}^{1/2}$$

$$\frac{\text{Cobalt disproportionation:}}{K_{disp}} = \frac{\left[\text{Co}_{\text{Co}}^{1/2} \cdot\right] \left[\text{Co}_{\text{Co}}^{3/2'}\right]}{\left[\text{Co}_{\text{Co}}^{1/2'}\right]^2}$$

$$\frac{\text{Oxygen interaction}}{K_{\text{Oint}} = \frac{[v_{\text{O2}}^{\bullet\bullet}][O_{\text{O3}}^{\text{x}}]}{[v_{\text{O3}}^{\bullet\bullet}][O_{\text{O2}}^{\text{x}}]}$$

UiO **Contemport of Chemistry**

University of Oslo

Site balances:

$$\delta = [v_{02}^{\bullet}] + [v_{03}^{\bullet}]$$
$$[0_{02}^{x}] + [v_{02}^{\bullet}] = 4$$
$$[0_{03}^{x}] + [v_{03}^{\bullet}] = 1$$
$$[Co_{Co}^{1/2}] + [Co_{Co}^{1/2'}] + [Co_{Co}^{3/2'}] = 2$$

Electroneutrality:

$$\frac{3}{2} \left[Co_{Co}^{3/2'} \right] + \frac{1}{2} \left[Co_{Co}^{1/2'} \right] = \frac{1}{2} \left[Co_{Co}^{1/2 \bullet} \right] + \left[La_{Ba}^{\bullet} \right] + 2\delta$$

The defect model is in good agreement with experimental data

UiO : Department of Chemistry University of Oslo

Full 3D defect chemical modelling

			BGLC1082		
	∆H (kJ/mol)	∆S (J/molK)	-2	A	
Reduction reaction	37 ± 3	58 ± 2			
Co disproportionation	44(fixed)	0(fixed)	-10		
Oxygen interaction	49 ± 2	-3 ± 1	800	600 400	1
			Tem	perature	0.9

	∆H (kJ/mol)	∆S (J/molK)	
Reduction reaction	35 ± 4	68 ± 3	
Co disproportionation	44 (fixed)	0 (fixed)	
Oxygen interaction	60 ± 5	1 ± 2	

UiO **Department of Chemistry** University of Oslo

Reduction enthalpies from TG-DSC in reasonable agreement with our defect model

University of Oslo

Conclusions

- Partial La-substitution seems to increase stability towards steam while maintaining high electrochemical activity
- As of yet, no clear trends are apparent in the electrochemical activity of BGLC as a function of La-content
- A defect model using a fully oxidized double perovskite as the reference structure has been developed
 - Uses all structural information available
 - Can accommodate La-substitution
 - > Assumes electronic degeneracy between the two cobalt atoms in each unit cell
- More data is needed to fully describe the oxygen ordering, cobalt charge disproportionation and potential proton incorporation mechanisms

Acknowledgements

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n° 621244.

