

() SINTEF

<u>Marie-Laure Fontaine</u>¹, Wen Xing¹, Zuoan Li¹, Ragnar Strandbakke², Christelle Denonville¹, Truls Norby², Rune Bredesen¹

¹ SINTEF Materials and Chemistry, ² University of Oslo

High temperature electrolyser with novel proton ceramic tubular modules (2014-2017)

Development of mixed proton-electron conducting anodes

Presentations:

- Nuria Bausá et al.: LSM/BZCY (19/09)
- Ragnar Strandbakke et al.: BGLC / BZCY (20/09)

UiO **Department of Chemistry** University of Oslo

ABENGOA HIDROGENO

Scaling up tubular proton ceramic electrolysers

- Simpler sealing technology, lower sealing area
- Better stress distribution during transient conditions
- Module design enables to close off a tube / ۲ replace it
- Segmented-in-series cells
 - Higher tube voltage lower tube current

Courtesy: UiO

Segmented-in-series cells by STACKING

Solid state reactive sintering:

- Limited number of processing steps
- Fast sintering
- Lower CO₂ emissions
- Lower cost

COORSTEK MEMBRANE SCIENCES

BZCY-NiO//BZCY

4

 $BaZr_{0.70}Ce_{0.20}Y_{0.10}O_3 \quad BaZr_{0.90}Y_{0.10}O_3$

Segmented-in-series cells by PRINTING-MASKING

 $BaZr_{0.90}Y_{0.10}O_{3}$

 $BaZr_{0.70}Ce_{0.20}Y_{0.10}O_3$

Manufacturing process based on SSRS

- Sieving
- Batching
- Water based slurry for SSRS mixtures

Automatic 40 tons extruder with capping, cutting systems and air lifted conveyor belt

Semi-automatic dip-coater for 1 m long sample (batch of 8 samples)

() SINTEF

Co-sintered support + electrode + electrolyte

EDS:

Ni

Routes for tailoring shrinkages

Pore formers and sintering aid

 Addition of pore formers
(A) in the electrode + reduction of temperature Addition of sintering aid
+ pore formers (B) in the support

Temperature:

- 1500 °C
- 1525 °C
- 1530 °C
- 1540 °C
- 1550 °C
- 1600 °C

Dwell:

- 2h
- 5h
- 10h

Various thermal profiles

Sintering shrinkage

"REFERENCE CASE"

SUPPORT WITH ADDITION OF SINTERING AID + ELECTRODE with PF + ELECTROLYTE

DIFFERENTIAL SHRINKAGE ALONG THE TUBE

UNIFORM SHRINKAGE ALONG THE TUBE

Sintering @ 1550 °C - 5h

Sintering 1550 °C - 5h

11

Sintering 1550 °C - 10h

Contact area between BGLC//interconnect//Ni : ~1.5 cm² Thickness of interconnected area ~20 µm

Total resistance: $10^{-3} \Omega$ with interconnect conductivity of 1 Scm⁻¹.

Stability/conductivity

required in air and

reducing conditions

TEC similar to other

Gas tightness

components

Glass - Metal

composites

(CSIC)

BGLC -

TiNb₂O₇

(SINTEF, UIO)

Interconnect

LSCM

(SINTEF, UiO)

Interconnects

Requirements:

-

 $La_{0.8}Sr_{0.2}Cr_{0.5}Mn_{0.5}O_{3-\delta}$

Dense pellets prepared by co-sintering LSM and LSC (1:1 mol. ratio) at 1500 °C; XRD analysis + Rietveld refinements + SEM: single phase

Spray-coating of interconnect

- Crushed pellets
- Planetary milling
- Sieving

D(10)= 1,6 um D(50)= 4,1 um D(90)= 15,6 um

 $La_{0.8}Sr_{0.2}Cr_{0.5}Mn_{0.5}O_{3-\delta}$

Compatibility after sintering in air at *1600* °*C* – *10h* (SEM-EDS, XRD)

BZCY72

WD 5.0 mm

LSCM BZCY72 NiO-BZCY72 Spray-coating of LSCM and sintering at 1500 °C on SIS cells

Conclusions

• Segmented-in-series tubular cells

- Protocols for manufacturing of cells currently being tuned to tailor thickness and porosity/density of the functional layers
 - Investigation of interconnect materials in progress:
 - Several materials under investigation
 - Various protocols for coating and sintering under investigation

Acknowledgements

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n° 621244.

