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 Theoretical considerations on electrolysis operation

 Development and performance of tubular Proton 
Ceramic Electrolysers (PCEs)



Literature data for Proton Ceramic 
Electrolysers (PCEs)

Electrolyte Anode Temperature i
(mA cm2)

ASR
(Ωcm2)

η (%) Ref

SSY541 SSC 600 100 4 ~80 Matsumoto,
2012

BCZY53-Zn BSCF 800 55 20 50 Li, 2013

BZCY72 LSCF 700 100 6 50 Babiniec, 
2015

BCZY53-Zn LSCM-
BCZYZ

700 2000 6-8 22 Gan, 2012

BCZY62 BSCF 600 1050 0.5 99 (?) Yoo, 2013

BCZY53 SSC-BCZY 700 400 1 - He, 2010

Key question:
What is the origin of the low faradaic 
efficiencies observed in many PCEs?

Degradation and decomposition in H2O



Operating Principles of Proton Ceramic 
Electrolysers (PCEs)
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Potentials through a solid oxide electrolyser
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Electronic conductivity distribution during 
PCE operation
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The effect of partial electronic conductivity 
on faradaic efficiency
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The effect of partial electronic conductivity 
on faradaic efficiency
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The effect of partial electronic conductivity 
on faradaic efficiency
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Electrode performance and steam content
significantly influence faradaic efficiency
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Tubular half-cell production

Dip-coating
suspensions

NiO based paste

Wet milling of 
precursors

Solid State Reactive Sintering

Extrusion of BZCY72-NiO 
support

Spray-coating BZCY72 
electrolyte



Dense tubular half-cells achieved

Dense electrolyte @ 
1550°C – 24h
1610°C – 6h

40 microns



1. Cap and seal segment using 
glass ceramic from CoorsTek

2. Deposit Ba0.7Gd0.8La0.5Co2O6-δ as 
steam electrode by paint brush

3. Firing in dual atmosphere:
 1000°C
 2% O2 outside, 5% H2 inside
 Ecell = 1.4 V during firing

4. Gold paste applied as current
collector

Steam electrode processing on reduced tubes

Cell 1



Electrolysis with single phase BGLC electrode
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Electrolysis with single phase BGLC electrode
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1. BZCY72- Ba0.5Gd0.8La0.7Co2O6-δ
applied as steam electrode

 Fired in air at 1200°C for 5h
 Infiltrated with nanocrystalline

Ba0.5Gd0.8La0.7Co2O6-δ

 Thin Pt layer current collection

2. Capped and sealed at 1000°C
 Semi-dual atmosphere to keep BGLC 

layer intact

3. NiO reduction at 800°C in 10% 
H2 for 24h

 Kept in electrolytic bias during 
reduction to avoid re-oxidation

Steam electrode processing on unreduced tubes

Cell 2



Electrolysis with composite BZCY-BGLC 
electrode
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Electrolysis with composite BZCY-BGLC 
electrode
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Improved faradaic efficiency primarily due 
to enhanced electrode kinetics
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Conclusions
 Proton Ceramic Electrolysers may suffer from electronic leakage during 

operation due to relatively high p-type conductivity in oxidizing conditions
 Operation at high overpotentials will induce higher electronic conductivity

within the electrolyte material
 Improved electrode performance and higher steam pressures may reduce 

electronic leakage

 Tubular PCEs were made based on BZCY-NiO tubular supports, spray 
coated BZCY72 electrolytes and BGLC steam electrodes
 Enhanced faradaic efficiencies observed with improved anode performance
 Current densities of 220 mA cm-2 at 600°C observed with > 80% faradaic 

efficiency
 Contact resistance may still contribute significantly to the ohmic resistance of the 

electrolyser
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