

UiO **Department of Chemistry** University of Oslo

Proton Conducting Electrolysers with Tubular Segmented-in-series Cells for Hydrogen Production

Marie-Laure Fontaine¹, Einar Vøllestad², <u>Jonathan M. Polfus¹</u>, Wen Xing¹, Zuoan Li¹, Ragnar Strandbakke², Christelle Denonville¹, Truls Norby², Rune Bredesen¹

¹ SINTEF Materials and Chemistry, Norway

² University of Oslo, Norway

Ceramic Electrolysers: utilizing waste heat

Solid Oxide Electrolyzers (SOE)

- Well proven technology
- Long term stability challenges
 - Delamination of O₂-electrode
- Higher temperature

Proton Ceramic Electrolysers (PCE)

- Less mature technology
 - Fabrication and processing challenges
- Produces dry H₂ directly
- Potentially intermediate temperatures
 - Slow O₂-electrode kinetics

Operating Principles of Proton Ceramic Electrolysers (PCEs)

High temperature electrolyser with novel proton ceramic tubular modules (2014-2017)

Scaling up tubular proton ceramic electrolysers

- Simpler sealing technology, lower sealing area
- Better stress distribution during transient conditions
- Module design enables to close off a tube / replace it

- Segmented-in-series cells
 - Retain high voltage

Plectra

Scaling up tubular proton ceramic electrolysers

Wet milling of precursors

BZCY-NiO paste

BaZr_{0.7}Ce_{0.2}Y_{0.1}O_{3-δ} (BZCY72)

CORSTEK. MEMBRANE SCIENCES

Spray- or dip-coating

Solid State Reactive Sintering

Scaling up tubular proton ceramic electrolysers

Development of new steam electrode materials

 $Ba_{1-x}Gd_{0.8}La_{0.2+x}Co_2O_{6-\delta}$ displays best PCE steam electrode performance (symmetrical disk samples)

Steam electrode processing

- 1. Cap and seal using glass-ceramic from CoorsTek
- Deposit Ba_{0.7}Gd_{0.8}La_{0.5}Co₂O_{6-δ} as steam electrode by paint brush
- **3.** Firing in dual atmosphere:
 - ≻ 1000 °C
 - > 2% O₂ outside, 5% H₂ inside
 - ➢ E_{cell} = 1.4 V during firing
- 4. Gold paste applied as current collector

Electrolysis with BGLC electrode

Steam electrode processing

- BZCY72-Ba_{0.5}Gd_{0.8}La_{0.7}Co₂O_{6-δ} applied as steam electrode
 - Fired in air at 1200°C for 5h
 - Infiltrated with nanocrystalline
 Ba_{0.5}Gd_{0.8}La_{0.7}Co₂O_{6-δ}
 - > Thin Pt layer current collection
- Capped and sealed at 1000°C
 Semi-dual atmosphere to keep BGLC layer intact
- NiO reduction at 800°C in 10% H₂ for 24h
 - Kept in electrolytic bias during reduction to avoid re-oxidation

Electrolysis with BZCY-BGLC composite electrode

() SINTEF

12

Improved faradaic efficiency primarily due to enhanced electrode kinetics

() SINTEF

Pore formers and sintering aid

Addition of pore formers (A) in the electrode + reduction of temperature • Addition of sintering aid + pore formers (B) in the support

Various thermal profiles

1500 °C

1525 °C

1530 °C

1540 °C

1550 °C

1600 °C

Dwell:

•

•

•

2h

5h

10h

Conclusions

- Tubular PCEs fabricated
 - BZCY-NiO tubular cathode support
 - Spray coated BZCY72 electrolyte
 - BGLC-BZCY72 steam electrode

- Current densities of 220 mA cm⁻² at 600°C obtained with > 80% faradaic efficiency
- PCEs may suffer from electronic leakage due to p-type conductivity in oxidizing conditions

Acknowledgements

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n° 621244.

Marie-Laure Fontaine¹, Einar Vøllestad², <u>Jonathan M. Polfus¹</u>, Wen Xing¹, Zuoan Li¹, Ragnar Strandbakke², Christelle Denonville¹, Truls Norby², Rune Bredesen¹

¹ SINTEF Materials and Chemistry, Norway ² University of Oslo, Norway

