

UiO **Department of Chemistry** University of Oslo

US AND HYDROGEN IS

IDHEA, Nantes, France, 2-4 November 2016

STEAM ELECTROLYSIS USING PROTON CERAMIC CELLS AND MODULES – DESIGN AND PERFORMANCE MODELLING

→ Co-electrolysis

H from H_2O +renewables (-O-H) or fossil (-C-H)?

- Proton ceramics can extract H from H₂O (steam)
- But also from hydrocarbons
 - Dehydrogenation; Produces H₂ + higher hydrocarbons (liquids)
 - Much lower energy (electricity) cost

S.H. Morejudo, R. Zanón, S. Escolástico, I. Yuste-Tirados, H. Malerød-Fjeld, P.K. Vestre, W.G. Coors, A. Martínez, T. Norby, J.M. Serra, C. Kjølseth, "Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor", *Science*, **353** [6299] (2016) 563-566.

Key differences between SOEs and PCEs

- advantages and challenges

- Solid Oxide Electrolysers (SOEs)
 - Well proven technology
 - Scalable production
 - High current densities at thermo-neutral voltage
 - Long term stability challenges
 - Delamination of O₂-electrode
 - Oxidation and degradation of Ni-electrode with high steam contents and/or low currents
 - High temperatures

O Department of Chemistry

University of Oslo

- Proton Ceramic Electrolysers (PCEs)
 - Less mature technology
 - Fabrication and processing challenges
 - Produces dry H₂ directly
 - Potentially intermediate temperatures

ABENGOA HIDROGENO

Slow O₂-electrode kinetics

High temperature steam electrolysis

W. Doenitz et al., "Hydrogen production by high temperature electrolysis of water vapour," *Int. J. Hydrogen Energy,* p. 55, 1980.

Heat exchange with input steam

Integration with renewable energy sources

Source	Regularity	Electricity + Heat	Steam
Grid	Constant	EI	-
Hydro	Constant	EI	-
Wind	Variable	EI	-
Wave	Variable	EI	-
Tidal	Variable	EI	-
PV	Variable	EI (+ low T heat)	-
Thermosolar	Variable	EI + heat (high+low T)	-
Geothermal	Constant	EI + low T heat	Steam

Thermosolar with molten salt storage

Operational modes of electrolyzers

- Electrolyzers especially solid-state don't like intermittent operation
- Three options:
- Constant sources (Grid, hydro, geothermal (+wind, vawe, tidal, PV))
- Operation with intermittent storage (thermosolar)
- Reversible operation?

Electrolyser

Fuel cell

Flow diagram of PCE

Aspen diagram of PCE

Aspen model of electrolyser plant where ELX1, ELX2 and the Electrolyser require electricity for vaporization, superheating and electrolysis respectively.

Electrolyser process design and efficiency

Specifications		
Sweep	No sweep gas	
Air at the anode inlet	No air	
Operating pressure	20 bar	
Steam utilization	60%	
Operating mode	Thermoneutral	
Temperature at anode Inlet and outlet	700°C	
Temperature at cathode Inlet and outlet	700°C	

Stream	Mass flow	Units
Steam in	0.1635	kg/s
H ₂	0.0110	kg/s
Power to electrolyzer	1.35	MW
Pump	253	W
Electric heater	0.04	MW
Heat of vaporization	0.31	MW
Electrolyzer electric efficiency	3.07	kWh _e /Nm ³
Plant electric efficiency	3.86	kWh _e /Nm ³
Faradayic efficiency	83.60	%

JiO **Contemport of Chemistry**

University of Oslo

 $\eta_F = \frac{\Delta G \times H_2 flow}{\Gamma}$ $P_{electrolyser}$

Integration with geothermal power plant

- Steam from turbine at 180-240°C
 - used to preheat water for electrolyser
- Thus one more heat exchanger
- Otherwise same scheme

Heating Consumption (MW)	0.35
Electrolyser Consumption (MW)	1.35
Total Electric Consumption (MW)	1.64
Total consumption (MW)	1.70
Cooling Water (m ³ /hr)	15.2
Geothermal Steam (MT/hr)	0.23
Electrolyser Efficiency (kWh/Nm ³)	2.86
Plant electric efficiency (kWh/Nm ³)	3.47

Thermosolar with molten salt

Molten salt stream from molten salt plant to use for generating steam for electrolyzer system

Stream	Mass flow	Units
Steam in	11.76	kg/s
H ₂	0.79	kg/s
Power to electrolyzer	97.26	MW
Pump	0.02	MW
Superheating the inlet steam	2.87	MW
Heat of vaporization	22.16	MW
Cooling	1.38	MW
Electrolyzer Efficiency	3.07	kWh _e /Nm ³
Plant electric efficiency	3.17	kWh _e /Nm ³
Faraday efficiency	83.65	%

Techno-economic evaluation – capital cost

1.35 MW case

	Grid/PV/Wind	Geothermal
Electrolyser	534,200 €	534,200 €
Heat Exchanger	30,000 €	36,000 €
Electrical heaters	12,000 €	12,000 €
Other Components	20,000 €	20,000 €
Process Control/HSE/HVAC	215,000 €	215,000 €
ISBL	811,200 €	817,200 €
OSBL	324,480 €	326,880 €
E&D	405,600 €	408,600 €
Contingency	81,120 €	81,720 €
Total Fixed Capital Cost	1,622,400 €	1,634,400 €

Operating costs

1.35 MW case

H ₂ Production 1.35 MW	Grid / PV / Wind	Geothermal	Method of approximation
Maintenance	24,336 €	24,336 €	3% of ISBL Investment
General Plant Overhead	15,818 €	15,818 €	65% of Maintenance
Fixed Operating Costs	40,154 €	40,154 €	

Prices		Units
Steam	15	€/MT
CW	0.05	€/m3
Deionised water	1.15	€/m3
Interest rate	10	%
Time	10	Years
Hours of operation per year	8000	Hours

UiO **Department of Chemistry** University of Oslo

Techno-economic evaluation

1.35 MW case

Tehno-economic evaluation

100 MW case

Conclusions

- Proton ceramic electrolyser (PCE) fundamentals
 - > 3.86 MWh/Nm³ H₂
- Increased efficiency by integration with geothermal and thermosolar energy (el+heat)
 - 3.47 MWh/Nm³ H₂ and 3.17 MWh/Nm³ H₂, respectively
- Minor differences in process design and efficiency to SOEs
 Potentially lower operating temperature
- Capital cost analyses uncertain at this stage

Acknowledgements

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n° 621244.

