

UiO • Department of Chemistry University of Oslo

Proton Ceramic Steam Electrolysers

<u>Einar Vøllestad¹</u>, R. Strandbakke¹, Dustin Beeaff² and T. Norby¹

¹University of Oslo, Department of Chemistry, ²CoorsTek Membrane Sciences AS

- Theoretical considerations on proton ceramic electrolysis operation
- Development and performance of tubular Proton Ceramic Electrolysers (PCEs)

Literature data for Proton Ceramic Electrolysers (PCEs)

Key question:
What is the origin of the low faradaic efficiencies observed in many PCEs?

Electrolyte	Anode	Temperature	i (mA cm²)	ASR (Ωcm²)	η (%)	Ref
SSY541	SSC	600	100	4	~80	Matsumoto, 2012
BCZY53-Zn	BSCF	800	55	20	50	Li, 2013
BZCY72	LSCF	700	100	6	50	Babiniec, 2015
BCZY53-Zn	LSCM- BCZYZ	700	2000	6-8	22	Gan, 2012
BCZY62	BSCF	600	1050	0.5	99 (?)	Yoo, 2013
BCZY53	SSC-BCZY	700	400	I	- /	He, 2010

Degradation and decomposition in H₂O

Operating Principles of Proton Ceramic Electrolysers (PCEs)

Potentials through a solid oxide electrolyser

Electronic conductivity distribution during PCE operation

The effect of partial electronic conductivity on faradaic efficiency

The effect of partial electronic conductivity on faradaic efficiency

The effect of partial electronic conductivity on faradaic efficiency

Electrode performance and steam content significantly influence faradaic efficiency

Tubular half-cell production CORSTEK.

Wet milling of precursors

NiO based paste

Extrusion of BZCY72-NiO support

Spray-coating BZCY72 electrolyte

Solid State Reactive Sintering

Dense tubular half-cells achieved

Steam electrode: Ba_{1-x}Gd_{0.8}La_{0.2+x}Co₂O_{6-δ}

- I: H. Ding et al., International Journal of Hydrogen Energy (2010).
- 2: R. Strandbakke et al., Solid State Ionics (2015).
- 3: Y. Lin et al., Journal of Power Sources (2008).
- 4: J. Dailly et al., Electrochimica Acta (2010).
- 5: M. Shang et al., RSC Advances, (2013)

Steam electrode processing on reduced tubes

- Cap and seal segment using glass ceramic from CoorsTek
- 2. Deposit $Ba_{0.7}Gd_{0.8}La_{0.5}Co_2O_{6-\delta}$ as steam electrode by paint brush
- 3. Firing in dual atmosphere:
 - > 1000°C
 - \triangleright 2% O₂ outside, 5% H₂ inside
 - \rightarrow E_{cell} = 1.4 V during firing
- Gold paste applied as current collector

Cell 1 Area: 5 cm²

Electrolysis with single phase BGLC electrode

Electrolysis with single phase BGLC electrode

Steam electrode processing on unreduced tubes

- 1. BZCY72- $Ba_{0.5}Gd_{0.8}La_{0.7}Co_2O_{6-\delta}$ applied as steam electrode
 - Fired in air at 1200°C for 5h
 - Infiltrated with nanocrystalline
 Ba_{0.5}Gd_{0.8}La_{0.7}Co₂O_{6-δ}
 - Thin Pt layer current collection
- Capped and sealed at 1000°C
 - Semi-dual atmosphere to keep BGLC layer intact
- NiO reduction at 800° C in 10% H₂ for 24h
 - Kept in electrolytic bias during reduction to avoid re-oxidation

Electrolysis with composite BZCY-BGLC electrode

Electrolysis with composite BZCY-BGLC electrode

Improved faradaic efficiency primarily due to enhanced electrode kinetics

Conclusions

- Proton Ceramic Electrolysers may suffer from electronic leakage during operation due to relatively high p-type conductivity in oxidizing conditions
 - Operation at high overpotentials will induce higher electronic conductivity within the electrolyte material
 - Improved electrode performance and higher steam pressures may reduce electronic leakage
- Tubular PCEs were made based on BZCY-NiO tubular supports, spray coated BZCY72 electrolytes and BGLC steam electrodes
 - **Enhanced faradaic efficiencies** observed with improved anode performance
 - Current densities of 220 mA cm⁻² at 600°C observed with > 80% faradaic efficiency
 - Contact resistance may still contribute significantly to the ohmic resistance of the electrolyser

Acknowledgements

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n° 621244.

