

Characterization of double perovskite electrodes on ionic conductors with transport of more than one type of charge carriers

Ragnar Strandbakke, Einar Vøllestad, Truls Norby

Truls Norby

Einar Vøllestad

Centre for Materials Science and Nanotechnology (SMN)

FERMiO Oslo Innovation Centre

BZCY: BaZr_{0.7}Ce_{0.2}Y_{0.1}O₃

Financial and scientific contributions from the EU ERANET RUS project «PROTON» and from the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n° 621244, Project «ELECTRA»

Double perovskite cathodes on BZCY electrolytes

 Some apparent electrode polarisation resistances (in wet oxygen) from impedance spectroscopy

$$Ba_{1-x}Gd_{0.8}La_{0.2+x}Co_2O_{6-\delta}$$

* Ragnar Strandbakke, Vladimir Cherepanov, Andrey Zuev, D. S. Tsvetkov, Christos Argirusis, Georgia Sourkouni-Argirusis, Stephan Prünte, Truls Norby, "Gdand Pr-based double perovskite cobaltites as oxygen side electrodes for proton ceramic fuel cells and electrolyser cells", under publication.

PCFC oxygen electrodes (cathodes)

PCFC oxygen electrodes (cathodes)

Mixed conductivity: protons, oxide ions, electrons (holes)

 Impedance spectra yield apparent electrode polarisation resistances

University of Oslo

R_v at S0 is fitted to

$$R_{S0} = R_{v} = \frac{1}{\frac{1}{R_{v,e^{-}}} + \frac{1}{R_{v,H^{+}}} + \frac{1}{R_{v,O^{2-}}}}$$

$$1/R_{v,H^{+}} = \sigma_{H^{+}} = F\mu_{H^{+}}c_{H^{+}}z_{H^{+}} = F\left[OH_{O}^{\bullet}\right]d_{m}\frac{1}{T}\mu_{H^{+}}^{0}\exp\left(\frac{-\Delta H_{mob,H^{+}}}{RT}\right)$$

$$1/R_{v,e^{-}} = \sigma_h = \sigma_h^0 \frac{1}{T} \exp\left(\frac{-E_{A,h}}{RT}\right) pO_2^{1/4}$$

R_v +Rp,ct,app at S1 is fitted to

University of Oslo

Recipe: Fix conductivity + charge transfer valuesat S1 Calculate properly $R_v + R_{p,1} + R_{p,2}$ at S2

$$R_{v} + R_{p,ct,app} + R_{p,d,app} \text{ at S2 is fitted to}$$

$$R_{s2} = R_{v} + R_{p,ct,app} + R_{p,d,app} = \frac{1}{\frac{1}{R_{v,e^{-}}} + \frac{1}{R_{v,H^{+}} + R_{p,d,H^{+}}} + \frac{1}{R_{v,O^{2-}} + R_{p,ct,O^{2-}} + R_{p,d,O^{2-}}}$$

$$\int_{0}^{0} \int_{0}^{0} \int$$

log(pO2(atm))

- Modelling by fitting all data
- Charge transfer vs diffusion
- Effect of electronic conduction

T (°C)

- Modelling by fitting all data
- Protons vs oxide ions
- Effect of electronic conduction

- Direct deconvolution of three rails
- Protons vs oxide ions

• Standard deconvolution

- Direct deconvolution of three rails
- Protons vs oxide ions
- Effect of electronic conduction

$$Ba_{0.9}Gd_{0.8}La_{0.3}Co_2O_{6-\delta}$$

0.19

- Direct deconvolution of three rails
- Protons vs oxide ions
- Effect of electronic conduction

Standard deconvolution		Approach II: 3 Rails		
$R_{\rm ct}(\Omega cm^2)$	0.065	$R_{ m ct}$ $R_{ m d}$	$R_{\rm ct}(H^+)$	0.13
			$R_{\rm ct}(O^{2^-})$	0.76
$R_{\rm d}(\Omega cm^2)$	0.125		$R_{\rm d}(H^+)$	0.27
			$R_{\rm d}(O^{2-})$	1.9

 $R_{\rm p}$

 $Ba_{0.9}Gd_{0.8}La_{0.3}Co_2O_{6-\delta}$

 $R_{\rm p}(\Omega cm^2)$

0.35

Conclusions

- Proton conducting oxides
 - Exhibit also some oxide ion conduction
 - especially at higher temperatures
 - Exhibit some electronic conduction,
 - especially at high or low pO₂ (p- or n-type)
 - affecting especially electrode studies
- Oxide-based oxygen electrodes
 - Tend to enhance oxide ion path over proton path
- Consequences for (oxygen) electrode studies
 - Impedance spectra must be interpreted accordingly
 - Conductivity data necessary as input
 - Go to lower temperatures!
 - Electrochemical impedances appear lower than they are

