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Recent developments of Y-doped BaZrO3 (BZY) as proton 

conducting electrolyte for fuel cells and steam electrolysers 
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Proton conducting ceramics are acceptor-doped oxides  

 

Hydration in presence of steam (H2O) gives proton conduction 
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Protons migrate by rotation and jumps 

a) Intra- and b) inter-octahedral proton diffusion paths in a perovskite, by MD: 

From K.-D. Kreuer, 2008 



Solid-state fuel cells 

 Examples with H2 as fuel 

 Solid Oxide Fuel Cell 

 

 

 

 

 Proton Ceramic Fuel Cell 

 

 

 

 PEM Fuel Cell 
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Solid-state electrolyser cells  

 Solid Oxide Electrolyser Cell 

 

 

 

 

 Proton Ceramic Electrolyser Cell 

 

 

 

 

 PEM Electrolyser Cell 
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Protia – CoorsTek Membrane Sciences Group, Norway 

 Spin-off from University of Oslo and NTNU 
 

◦ Commercialisation of proton ceramic materials and processes 

 

◦ Lab facilities integrated with University of Oslo and SINTEF Oslo  

 

◦ Focus on processes for natural gas upgrading 

 

◦ Norwegian venture capital 2008-2012 

 

◦ Coors / CoorsTek / Ceramatec 2013-2014 

 

◦ Renamed and Part of CoorsTek Membrane Sciences Group 2015 
 USA, France, Norway 

Dr. Grover W. Coors 



Three main Protia processes 

 Steam electrolysis to hydrogen 

 

2H2O = 2H2 + O2 

 

 

 Direct reforming to compressed hydrogen 

 

CH4 + 2H2O = CO2 + 4H2 

 

 

 Direct dehydro-aromatisation 

 

6CH4 = C6H6 + 9H2 
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Proton conductivity in acceptor-doped oxides 

La27W5O55.5 

Ca-doped LaNbO4 

EU 7FWP Energy “EFFIPRO” 

Final report. 
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oxides”, in “Perovskite 

oxides for solid oxide fuel 

cells“, T. Ishihara, ed., 

Springer, 2009, ISBN 978-0-

387-77707-8.  



Leading material: BaYxCeyZr1-x-yO3-d 

 Example: BaY0.2CeyZr0.8-yO3-d 

 40 μm electrolyte 

 Ni-electrolyte cermet anode 

 (Ba,Sr)(Co,Fe)O3 cathode 

 Wet H2 vs air 



Anode-supported tubular BZCY 

 CoorsTek/Protia/SINTEF 

 Reaction sintering: 

 BaCO3/BaSO4+ ZrO2 + CeO2 + Y2O3 (+NiO) 

  

 Slip-cast/extrude BZCY-NiO composite 

 Spray/dip/spin BZCY electrolyte precursor 

 Co-sinter 

 Reduce NiO to Ni in H2 

◦ Sufficient porosity for PCFC&PCEC with H2 

 30 cm, 10 mmØ, 1 mm wall, 20 μm BZCY 

 

 Developments: 

◦ DC conductivity – bulk and grain boundaries 

◦ Chemical expansion 

◦ O2 side electrodes 

◦ Segmented in series tubes 

◦ Overall fabrication procedures 



International workshop on BZY, Oslo, March 2015 

 



International workshop on BZY, Oslo, March 2015 

 BZY workshop sessions: 

   General, proton conductivity 

   Structure and stability 

   Defects, tranport, modelling 

   Grain boundaries 

   Fabrication 

   Electrodes 

   Applications 
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• «Fundamentals» 

• Grain boundary resistance 

• Sintering aids 

• Solid state reactive sintering 

• Space charge 

• Proton trapping 

20 years of BZY 



Babilo and Haile / J. Am. Ceram. Soc., 88 2362–2368 (2005) 

Tao and Irvine / Adv. Mater. (2006) 18, 1581–1584 

Sintering temperature 1300°C 

BZY sintering aids – started with ZnO 



• Various sintering additives have been 

tested, transition metal oxides in particular 

J. Tong et al. / Solid State Ionics 181 (2010) 496–503 

• NiO yields the best result (?) 

Sintering aids for BZY; almost everything has been tried… 



A grain boundary of BZY. Photo: Adrian Lervik 



Schematic overview of a charged grain boundary 

Grain boundary core 
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Kjølseth, C.; Fjeld, H.; Prytz, Ø.; Dahl, P. I.; Estournès, C.; Haugsrud, R.; Norby, T. Solid State Ionics 2010, 181, 268–275. 



F. Iguchi et al. / J. Mater. Chem., (2010), 20, 6265–6270 

Space charge effect in BZY gb’s 

 Positive grain boundary core yields adjacent charge 

compensating regions, i.e. space charge layers: 

 

• Decreasing concentration of protons, oxygen vacancies, and 

electron holes in the vicinity of core 
 

• Increasing amount of acceptors and electrons 

 

C. Kjølseth et al. / Solid State Ionics 181 (2010) 268–275 



Proton conductivity varies with fabrication procedures 

 Grain size 

 

 Ba loss 

 Sintering aid loss 

 

 Dopant distribution 

 Sintering aid distribution 

 

 

 

F. Iguchi et al. / Solid State Ionics 180 (2009) 563–568 



What we think happens in BaZr1-xYxO3-2x 

 High T and sintering aid like NiO necessary 

◦ Dense, large grained material 

 Ni ends up as BaY2NiO5(l), Nii
*, or Ni(s) 

 Ba loss by evaporation, leads to YBa
*  

 

 Effective acceptor dopant content becomes 
critically low 

 

 Grain boundaries positive from oxygen vacancy 
accumulation 

 Well chosen sintering procedure counteracts this 
by accumulating the dopant Y too 

 

 Space charge depletion of charge carriers 
varies by orders of magnitude 

F. Iguchi et al. / Solid State Ionics 180 (2009) 563–568 



What happens when… 

 BZY sinters? 

 

 

 

 

 BZY grains grow? 

Stationary vs moving grain boundaries 



Summary 

 Proton conducting ceramics are pure H transporters 

 

 Electrochemical processes with H more efficient 

 

 BZY and similar most promising materials 

 

 Challenges 

◦ Sintering 

◦ Chemical expansion 

◦ Grain boundary resistance 

 

 Now focus on  

◦ Correctly interpreting the complexity of effects! 

◦ What happens during fabrication; sintering and grain growth? 
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