

UiO **Content of Chemistry** University of Oslo

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n° [621244].

Electra

FERMiO

Truls Norby

University of Oslo

truls.norby@kjemi.uio.no

http://folk.uio.no/trulsn

Proton conducting ceramics are acceptor-doped oxides

Hydration in presence of steam (H₂O) gives proton conduction

 $H_2O(g) + v_0 + O^{2-} = 2OH^{-1}$

 $H_2O(g) + v_0^{\bullet \bullet} + O_0^x = 2OH_0^{\bullet}$

Protons migrate by rotation and jumps

a) Intra- and b) inter-octahedral proton diffusion paths in a perovskite, by MD:

Solid-state fuel cells

- Examples with H₂ as fuel
- Solid Oxide Fuel Cell

Proton Ceramic Fuel Cell

Solid-state electrolyser cells

Solid Oxide Electrolyser Cell

Proton Ceramic Electrolyser Cell

PEM Electrolyser Cell

SMN

Protia – CoorsTek Membrane Sciences Group, Norway

- Spin-off from University of Oslo and NTNU
 - Commercialisation of proton ceramic materials and processes
 - Lab facilities integrated with University of Oslo and SINTEF Oslo
 - Focus on processes for natural gas upgrading
 - Norwegian venture capital 2008-2012
 - Coors / CoorsTek / Ceramatec 2013-2014

Dr. Grover W. Coors

- Renamed and Part of CoorsTek Membrane Sciences Group 2015
 - USA, France, Norway

MEMBRANE SCIENCES GROUP

Three main Protia processes

• Steam electrolysis to hydrogen

 $2H_2O = 2H_2 + O_2$

Direct reforming to compressed hydrogen

 $CH_4 + 2H_2O = CO_2 + 4H_2$

Direct dehydro-aromatisation

$$6CH_4 = C_6H_6 + 9H_2$$

UiO **Department of Chemistry** University of Oslo

Proton conductivity in acceptor-doped oxides

Det Sig HV WD Mag Spot SSD BSE 15.0 kV 11.0 mm 5000x 4.0

Amazing Solutions

Leading material: BaY_xCe_yZr_{1-x-y}O_{3-d}

SMN

- Example: BaY_{0.2}Ce_yZr_{0.8-y}O_{3-d}
- 40 µm electrolyte
- Ni-electrolyte cermet anode
- (Ba,Sr)(Co,Fe)O₃ cathode
- Wet H₂ vs air

UiO **Department of Chemistry**

University of Oslo

Y. Guo, et al., J. Power Sources (2009), doi:10.1016/j.jpowsour.2009.03.044

Fig. 7. *I*-*V* curves of the cells with various BZCYy electrolytes and the BSCF cathode: (a) y = 0.0; (b) y = 0.4; (c) y = 0.8.

Anode-supported tubular BZCY

- CoorsTek/Protia/SINTEF
- Reaction sintering: BaCO₃/BaSO₄+ ZrO₂ + CeO₂ + Y₂O₃ (+NiO)
- Slip-cast/extrude BZCY-NiO composite
- Spray/dip/spin BZCY electrolyte precursor
- Co-sinter
- Reduce NiO to Ni in H₂
 - Sufficient porosity for PCFC&PCEC with H₂
- 30 cm, 10 mmØ, 1 mm wall, 20 μm BZCY
- Developments:
 - DC conductivity bulk and grain boundaries
 - Chemical expansion
 - O₂ side electrodes
 - Segmented in series tubes
 - Overall fabrication procedures

UiO **Department of Chemistry** University of Oslo

Mag | Spot

82 mm

International workshop on BZY, Oslo, March 2015

RCN NANO2021 FOXCET

International Workshop on BZY

March 24-27, 2015

🕥 SINTEF

NTNU – Trondheim

Norwegian University of Science and Technology

Oslo Science Park (Forskningsparken), Gaustadalleen 21, Oslo, Norway

Protia

Tuesday March 24th

2000 Invited speakers welcome at dinner in downtown restaurant (TBA)

Wednesday March 25th; Oslo Science Park - CIENS Top Centre

- Start 0830 Welcome, coffee
 - R. Bredesen: Welcome

UiO **Department of Chemistry** University of Oslo

International workshop on BZY, Oslo, March 2015

 BZY workshop sessions: General, proton conductivity Structure and stability Defects, tranport, modelling Grain boundaries Fabrication Fabrication of Bulk BaZr_xCe_(0.9-x)Y_{0.1}O_{3-d} **Electrodes Applications**

UiO **Department of Chemistry** University of Oslo

20 years of BZY

«Fundamentals»

٠

BZY sintering aids – started with ZnO

Tao and Irvine / *Adv. Mater.* (2006) **18**, 1581–1584 Babilo and Haile / J. Am. Ceram. Soc., **88** 2362–2368 (2005)

Sintering aids for BZY; almost everything has been tried...

- Various sintering additives have been tested, transition metal oxides in particular
- NiO yields the best result (?)

J. Tong et al. / Solid State Ionics 181 (2010) 496-503

A grain boundary of BZY. Photo: Adrian Lervik

Schematic overview of a charged grain boundary

Kjølseth, C.; Fjeld, H.; Prytz, Ø.; Dahl, P. I.; Estournès, C.; Haugsrud, R.; Norby, T. Solid State Ionics 2010, 181, 268–275.

Protia

Amazing Solutions

UiO **Department of Chemistry**

University of Oslo

Space charge effect in BZY gb's

- Positive grain boundary core yields adjacent charge compensating regions, *i.e.* **space charge layers**:
- Decreasing concentration of protons, oxygen vacancies, and electron holes in the vicinity of core
- Increasing amount of acceptors and electrons

F. Iguchi et al. / J. Mater. Chem., (2010), 20, 6265–6270

Proton conductivity varies with fabrication procedures

- Grain size
- Ba loss
- Sintering aid loss
- Dopant distribution
- Sintering aid distribution

F. Iguchi et al. / Solid State Ionics 180 (2009) 563-568

What we think happens in BaZr_{1-x}Y_xO_{3-2x}

- High T and sintering aid like NiO necessary
 - Dense, large grained material
- Ni ends up as $BaY_2NiO_5(I)$, Ni^{*}, or Ni(s)
- Ba loss by evaporation, leads to Y_{Ba}*
- Effective acceptor dopant content becomes critically low
- Grain boundaries positive from oxygen vacancy accumulation
- Well chosen sintering procedure counteracts this by accumulating the dopant Y too
- Space charge depletion of charge carriers varies by orders of magnitude

F. Iguchi et al. / Solid State Ionics 180 (2009) 563-568

What happens when...

BZY sinters?

• BZY grains grow?

Stationary vs moving grain boundaries

UiO **Department of Chemistry** University of Oslo

Summary

- Proton conducting ceramics are pure H transporters
- Electrochemical processes with H more efficient
- BZY and similar most promising materials
- Challenges
 - Sintering
 - Chemical expansion
 - Grain boundary resistance
- Now focus on
 - Correctly interpreting the complexity of effects!
 - What happens during fabrication; sintering and grain growth?

