

UiO Department of Chemistry
University of Oslo

Steam to hydrogen using proton ceramic electrolysers

Einar Vøllestad

Hydrogen technology developments over the last centuries

Today's hydrogen production is dominated by fossil fuel reforming

Electricity costs comprise >80 % of total cost of hydrogen with

Increasing operating temperature allows reduction of electricity consumption by utilization of thermal energy

Comparison of SOEs and PCEs

- Solid Oxide Electrolysers (SOEs)
 - Well proven technology
 - Scalable production
 - High current densities at thermo-neutral voltage
 - Long term stability challenges
 - Delamination of O₂-electrode
 - Oxidation of H₂-electrode at OCV
 - High temperatures
- Proton Ceramic Electrolysers (PCEs)
 - Less mature technology
 - Fabrication and processing challenges
 - Produces dry, pressurized H₂ directly
 - Potentially intermediate temperatures
 - Slower degradation
 - Slow H₂O-electrode kinetics

Processing of single tube proton ceramic electrolysers

Single segment, reduced at 1000°C for 24h in 5% H₂

Capped and sealed using custom-made glass ceramic

Steam electrode (BGLC785) drip-coated and brush-painted

Fired in dual atmosphere with applied bias:

- 2% O₂ outside, 5% H₂ inside
- E_{cell} = 1.4 V during firing (above 500°C)

Electrolysis tests with gold current collector.

Electrolysis tests reveal that the electrodes still need further development and improved processing to reach target performance

Electrolysis tests reveal that the electrodes still need further development and improved processing to reach target performance

Tubular electrolysers could improve module lifetime by individual tube monitoring and replacement

Segment-in-series tubular cells drives up the voltage and reduces total current for each tube

Challenging processing routes due to differential shrinking

Where do we move from here....?

 Increased and continued focus on device/cell/stack manufacturing for better performance

 Go back to more fundamental material development using what we learn during the project

Looking more specifically into the fundamentals of PCE electrochemistry

Acknowledgements

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n° 621244.

